Hello friends,
Welcome back.
Today I am going to tell you about one more new discovery in the field of science. It is a quite amazing discovery and a very useful one also
Electronic components that exploit the phenomenon of superconductivity could allow us to study the collective behaviour of large numbers of neurons operating over long timescales. That is the finding of scientists in the US, who have shown how networks of artificial neurons containing two Josephson junctions would outpace more traditional computer-simulated brains by many orders of magnitude. Studying such junction-based systems could improve our understanding of long-term learning and memory along with factors that may contribute to disorders like epilepsy.
The human brain consists of some 100 billion nerve cells known as neurons, each of which receives electrical inputs from a number of its neighbours and then sends an electrical output to others – a process known as "firing" – when the sum of its inputs exceeds a certain level. The connections between neurons are known as synapses and it is the relative weighting of these that determines how the brain processes information.
One way to simulate the workings of the brain is using software. For example, the Blue Brain project at the Ecole Polytechnique Fédérale de Lausanne in Switzerland involves simulating in precise biological detail the 10,000 neurons that make up the neocortical column – the building block of the cerebral cortex, or grey matter.
Good Bye.
See you in next post.
Welcome back.
Today I am going to tell you about one more new discovery in the field of science. It is a quite amazing discovery and a very useful one also
Electronic components that exploit the phenomenon of superconductivity could allow us to study the collective behaviour of large numbers of neurons operating over long timescales. That is the finding of scientists in the US, who have shown how networks of artificial neurons containing two Josephson junctions would outpace more traditional computer-simulated brains by many orders of magnitude. Studying such junction-based systems could improve our understanding of long-term learning and memory along with factors that may contribute to disorders like epilepsy.
The human brain consists of some 100 billion nerve cells known as neurons, each of which receives electrical inputs from a number of its neighbours and then sends an electrical output to others – a process known as "firing" – when the sum of its inputs exceeds a certain level. The connections between neurons are known as synapses and it is the relative weighting of these that determines how the brain processes information.
One way to simulate the workings of the brain is using software. For example, the Blue Brain project at the Ecole Polytechnique Fédérale de Lausanne in Switzerland involves simulating in precise biological detail the 10,000 neurons that make up the neocortical column – the building block of the cerebral cortex, or grey matter.
Good Bye.
See you in next post.
Comments
Post a Comment